Embedding Problems

P N Kaddaj

February 2023

Definition 1. (Equivalence of embeddings) Two embeddings $f, g: X \to Y$ are equivalent if there is a homeomorphism $h: Y \to Y$ s.t. $h \circ f(x) = g(x)$

Problem 1. Give an example of non-equivalent embeddings $X \to Y$ where X is a) connected b) disconnected

Problem 2. Let $f: S^1 \to S^1 \times \mathbb{R}$ be an embedding $s.t.f(S^1) = S^1 \times \{0\}$ then if $g: S^1 \to S^1 \times \mathbb{R}$ is equivalent to f it sends the generator of $H_1(S^1)$ to the generator of $H_1(S^1 \times \mathbb{R})$. Thus, describe the equivalence classes of embeddings $S^1 \to S^1 \times \mathbb{R}$. Is the answer the same for $S^1 \to S^1 \times \mathbb{R}^n$ with n > 1?

Problem 3. Do equivalent embedding have homeomorphic complements? That is given two embeddings $g, f: X \to Y$ then isit truw that $Y \setminus f(X) \cong Y \setminus g(X)$?

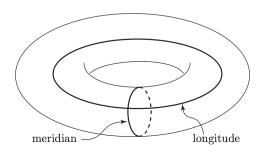
Definition 2. (Flat) A k sphere/cell S in \mathbb{R}^n is flat if there is some homeomorphism h of \mathbb{R}^n s.t. $h(S) = S_{st}$ where S_{st} is the standard unit sphere or disk in \mathbb{R}^n .

Definition 3. (Locally Flat) A k sphere/cell S in \mathbb{R}^n is locally flat at $x \in S$ if there is an open neighbourhood U of x and a homeomorphism of pairs $(U, U \cap S) \cong (\mathbb{R}^n, \mathbb{R}^k)$

Problem 4. Show that if a k sphere/cell S in \mathbb{R}^n is locally flat at all of it's points then it is flat.

Definition 4. (Knotted embeddings) Fix some standard embedding $X \to Y$ then an embedding $f: X \to Y$ is knotted if it is homotopic to the standard embedding but not equivalent to it.

Problem 5. (Torus Knots) The standard embedding for a torus $T = S^1 \times S^1$ in \mathbb{R}^3 is the one shown in the diagram below. A curve of the form $S^1 \times pt$ is called a longitude and a curve of the form $\{pt\} \times S^1$ is called a meridian. Let $p, q \in \mathbb{Z}$ be relatively prime.



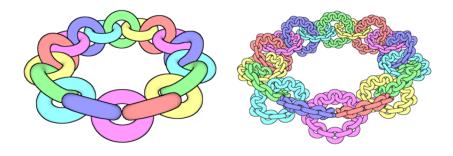
a) show that there exists a simple closed curve $K_{p,q}$ that is homologous to p times longitude plus q times the meridian. This is called the (p,q) Torus knot. Also show that $T^2 \setminus K_{p,q} \cong S^1 \times (-1,1)$. b)(*) For which values of p,q is $K_{p,q}$ flat or unkotted?

Definition 5. (Tame and Wild Cantor Sets) A Cantor set $C \subset \mathbb{R}^n$ is tame if there is a homeomorphism of \mathbb{R}^n taking it to the standard middle thirds Cantor set in some linear subspace. (Note this is the same as flat). Else the Cantor set is wild.

Problem 6. Let $C \subset \mathbb{R}^n$ be a Cantor set. Show that for:

a) n=1 there is a homeomorphism $h: \mathbb{R} \to \mathbb{R}$ such that h(C) is the middle thirds Cantor set b) n=2 there is a homeomorphism $h: \mathbb{R}^2 \to \mathbb{R}^2$ such that $h(C) \subset l$ for some affine line l. So conclude that every Cantor set in \mathbb{R}^2 is tame.

Problem 7. (Antoine Cantor Sets) Let $T_0 \subset \mathbb{R}^3$ be a solid torus and let T_1 be a collection of at least 3 solid tori s.t. each links only its two neighbours. For each solid torus component of T_1 find collections of at least 3 solid tori linked as before and let T_2 be the union of these collections of tori that lie in each component of T_1 . Proceed to define $T_3 \supset T_4 \supset \ldots$ in a similar manner. Define the Antoine Cantor set as the intersection $T = \cap T_i$. Below are T_1 and T_2 .



- a) Show that T is a wild Cantor set and that no 2-sphere separates it.
- b) Ammend the construction to obtain a wild arc and a wild sphere in \mathbb{R}^3
- c) Extend this construction to \mathbb{R}^n
- d)(*) Show that there are an uncountable number of inequivalently embedded Cantor sets

Problem 8. Vary Antoine's construction. Now we allow T_i to be any number of tori. For example we could pick T_i to be a single solid torus inside T_{i-1} and homothetic to it. In this case $T = S^1$.

- a) Can you still obtain wild Cantor sets if at each stage in the construction T_i can only have one or two solid tori in each torus component of T_{i-1}
 - b) Construct a wild Cantor set with a simply connected complement.
- c)(*) Give an example of a contractible open 3-manifold $M \subset \mathbb{R}^3$ that is not homeomorphic to \mathbb{R}^3

Problem 9. (Daverman's question)(***) Mazur constructed contractible compact smooth 4-manifolds in \mathbb{R}^4 that that have boundary a homology 3-sphere not homeomorphic to the standard S^3 . Likorish showed further that it was possible to knot these manifolds in \mathbb{R}^4 . Combining their results it may now be posssible to answer a question of Daverman: Is there a collection of contractible 4 manifolds $M_i \subset \mathbb{R}^4$ s.t. their intersection gives a wild Cantor set?

Problem 10. Given a Cantor set $C \subset \mathbb{R}^n$ show that there exists an arc α s.t. $C \subset \alpha \subset \mathbb{R}^n$.

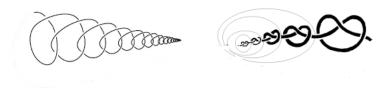
Definition 6. (Pierced by a segment) A sphere $S \in \mathbb{R}^n$ is said to be pierced by a segment if there is a straight line l (according to the affine structure) s.t. $l \cap S = \{pt\}$.

Problem 11. A previous question asked at a conference in Stockholm conjectured that a sphere $S \subset \mathbb{R}^3$ pierced by a segment at each of it's points is flat. Prove or disprove the conjecture. (Is the Horned sphere a counterexample?)

Definition 7. (Cellular) A subset X of \mathbb{R}^n is cellular if there exists a sequence of nested n-balls $B_n \supset Int(B_{n+1})$ that intersect in X i.e. $X = \cap B_i$

Problem 12. (Fox-Artin) Recall Fox-Artin's construction of an arc wild in one point (see below).

- a) Show that it is cellular explicitly
- b) it's double is wild



Problem 13. Consider the infinite trefoil knot drawn in the diagram above. Show that it is not flat. What happens if we wedge it with an interval at the limit point?

Problem 14. (**) The spheres of Fox and Artin give examples of wild embeddings of S^2 in S^3 that fail to be flat at a finite number of points. Is it possible to construct examples of n-spheres in S^{n+1} that are wild at a finite number of points (n > 2) either by amending the construction above or by other methods.

Problem 15. (Brown) A question of Brown in the 60s asked whether if $A \vee B$ is cellular then A is cellular. Using the wild constructions discussed previously or otherwise answer Brown's question.

Problem 16. (Rolfsen's Problem) Rolfsen's Problem asks whether any knot is topologically isotopic to the unknot.

- a) Show that a knot that is locally flat at one point is isotopic to the unknot.
- b) Consider the pseudo-isotopy that contracts the Bing Sling onto the centre of its first defining torus. Can it be extended to an isotopy?
 - c) construut a knot that pierces no disc but is isotopic to the unknot.